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Abstracti

\\:QXWe present a procedure which generates all the facets of

a 0-1 programming polytope P with positive coefficients in a
finite number of steps. The procedure is based upon the rela-
tionship between facets of P and facets of the knapsack poly-
topes corresponding to certain nonnegative combinations of in-
equalities implied by P. Finiteness of the procedure is proven
by examining the relationship of the valid inequalities gener-
ated during each step of the procedure in connection with a
reéult due to Chvétal\ﬁili\ In addition to exploring the proper-
ties of inequalities generated by the procedure, several proper-
ties of the classes of valid inequalities for the knapsack poly-
tope defined in Balas\Eil_and Balas and Jeroslow\fgj‘are pre-
sented. In particular, the set of canonical inequalities\ﬁal‘
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is shown to belong to Chvatal's elementary closure
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A PROCEDURE FOR GENERATING THE CONVEX HULL
OF A
0-1 PROGRAMMING POLYTOPE
WITH
A POSITIVE COEFFICIENTS
by
Joseph B. Mazzola

1. Introduction

Consider the 0-1 programming problem

max LI C.X.

jEN JdJ
(MKP) ) _
I ayx. < a5, i€M={1,2,...,n) (1)
jen 94
xj = 0 orl, j €N, (2)
where ai >0, j€NUI{0}, i €M, This problem is often refer-

J

red to as the multidimensional knapsack problem or as a monotone

0-1 program. Such problems arise in many useful mathematical

programming models such as the discrete capital budgeting

problem.

We shall find it useful to also represent (MKP) in the

matrix form max c¢x
Ax = A,
x5 = Oor1l, j€N.
Also denote the ith inequality of (1) as atx < aé.
The set

P = P(A,Ay) = conv{x € R™|Ax < Ay X5

will be called the multidimensional knapsack polytope
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. =0or1l, je€N}

o

.




corresponding to the system Ax < Ay The inequality

X. < ’
j}éNang = 3 (3)

where aj > 0, j € N, is referred to as a knapsack inequality
and is sometimes denoted as ax < a, or simply (a,ao). The
set P(a.ao) is called its corresponding knaﬁsack polytope.

An inequality ax < ajy is called a facet of P if i) ax < a,
is a valid inequality for P, i.e. ax < a, is satisfied for all
X € P, and ii) there exist d affinely independent points of P
which satisfy ax = ay» where d is the dimension of P. It is
well known that d = IN|, i.e. P is full-dimensional, if and only
if a% < aé. for all j € N, 1 € M. Unless otherwise stated, we
shall assume P to be full-dimensional.

Clearly the advantage of explicitly knowing the set F(P)
of all facets of P is the fact that (MKP) can be solved as a
linear program. Since the number of such facets is typically
at least exponential, one perhaps ought not aspire to the goal
of obtaining them all in a practical setting. However, a finite
procedure for generating these facets or perhaps strong valid
inequalities for P could be useful in the sense that the con-
straint set Ax < A could be amended to include some of these
valid inequalities in the hope of closing the gap between the
optimal value of (MKP) and the value of the linear programming
relaxation.

It is natural to seek the relationship between the facets
of the multidimensional knapsack polytope P and the facets of

the individual knapsack polytopes P(al.ag) corresponding to
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each constraint in (1). 1In general, P has facets which are not

facets of any P(ai.aé). i € M, and many facets of the P(ai,aé)
are not facets of P. Knapsack inequalities and facets of their
corresponding polytopes have received considerable attention in
the literature [1],[2],[3],[4#],(5J,09],(12],[13], and [14].
This paper deals with the task of generating F(P) by exploring
this relationship.

Balas and Zemel [5] have shown that any facet of P can be
obtained by a secuence of operations which involves the comple-
menting of certain variables, the application of a generalized
lifting procedure, and a subsequent recomplementing of the
relevant variables. (See also Wolsey [13].) This process can
be viewed as a finite procedure for generating all the facets
of P; however, the generalized lifting procedure involves the
solution of many smaller multidimensional knapsack problems.
When specialized to a 0-1 knapsack problem, the systematic
aprlication of this sequence c¢f operations yields a finite pro-
cedure for generating all the facets of the knapsack polytope,
and it then only requires the solution of many 0-1 knapsack
problems.

As previously suggested, we are exploring the relationship
between the facets of the multidimensional knapsack polytope P
and those of certain knapsack polytopes which are derived from
the constraints of (1). We shall therefore assumne that given
any knapsack inequality, we can generate the set of all facets
of its corresponding knapsack polytope in a finite number of

steps by applying a procedure such as the one noted above.
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An iterative procedure for generating the facets of P is

presented in the next section. After showing that each iteration
(step) of the procedure requires a finite number of operations,
we show that the procedure will indeed generate all the facets

of P in a finite number of steps. This is accomplished by
examining the inequalities generated during each iteration in
relation to a result due to Chvatal [7]. In the course of ex-
ploring this relationship, some properties concerning the family
of valid inequalities for the knapsack polytope defined in [1]
are stated and proved. In particular, the set of canonical in-
equalities [3] are shown to belong to Chvatal's elementary clo-

sure.

2. A Finite Procedure for Generating ,Zsz

In this section we describe a procedure for generating the

set F(P) of all facets of P. The procedure is shown to be com-
plete in the sense that it generates all facets of P, and it is
also shown to be finite. We first establish some necessary
definitions.
Given the set of inequalities (1), a subset K = N is said
to be a sover for (1) if
I a3 > ag (%)
for some i € M.
The cover K is said to be minimal if
£ al < al, iem (5)
jep 4 = 70
for all proper subsets T of K.

Obviously, if K is a minimal cover for (1), then it is a
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minimal cover for a’x < aé for at least one i € M.

For any point x € {0,1}", where n = [N|, define supp(x)
= {j€ lej = 1}, As previously mentioned, an inequality
ax < ag is said to be valid for ihe polytope P if ax < ag is
satisfied for all x € P.

An inequality ax < ag is said to dominate the inequality
bx < by, where aj; and by are not both O, if there exists a real

number A > 0 such that

hay = by
kaj > bj' for all j € N.
If in addition kak > Abk for some k € N, then ax < a; is said

to strictly dominate bx < by«

We now introduce a second notion of dominance. An in-
equality A is said to c-dominate an inequality B if every 0-1
point satisfying A also satisfies B. Additionally, if there

exists a 0-1 point x satis’”;

o

“ing B but not A, then A strictly

c-dominates B.

Clearly, c-dominance is a weaker property than dominance.
We now present an example which shows that it is strictly weaker.
Example 1. Consider the inequalities
2x) + X, + Xq+x, <2 (6)
and

+ X, < 1. (7)

X
1l
Inequality (6) does not dominate inequality (7); yet, it
c-dominates it.
This notion of c-dominance will play an important role in

defining the procedure to follow. We now state some results

FUCTNIC ¥ RIS A T
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which should provide some insight into why such a notion is
desirable.

Proposition 1. The inequality

£ ax;: <a (3)
jen 99 = 0

c-dominates
Z b.x, <D (8)
jEN J J 0

if and only if every cover M for (8) is also a cover for (3).
Proof. Suppose there exists a cover C for (8) which is not
a cover for (3), and let X € {O,l}n be defined by supp(X) = C.

Since € is a cover for (8) but not for (3), we have that X

satisfies (3) but not (8), and hence (3) does not c-dominate (8).

Conversely, suppose that (3) does not c-dominate (8). Then
there exists a 0-1 point X such that aX < a, but X > b,. Let
C = supp(%X). Obviously, C is then a cover for (8) but not for
(3). |l

We therefore see why the term c-dominate was chosen. The
following corollary follows directly from the definition of
c-dominance and that of the knapsack polytope P(a,ao).

Corollary 1.1. The inequality ax < a; c-dominates bx < b

if and only if P(a,ao) = P(b,bo).

Corollary 1.2. If the inequality ax < ay c-dominates
bx < bo and if Bx < Bo is a valid inequality for P(b,bo), then
it is a valid inequality for P(a,ao).

The proof follows immediately from the fact that
P(a,aj) = P(b,by) if ax < aj c-dominates bx < by.

The next result concerns a relationship between some of
the facets of two different knapsack polytopes corresponding to

valid inequalities for P.
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Proposition 2. ILet ax < aj and bx < by both be valid in-
equalities for the multidimensional knapsack polytope P. 1If
ax < a, c-dominates bx < by, and 1f some facet fx < B, of
P(b.bo) is also a facet of P, then Bx < BO is a facet of P(a,ao).
Proof. Since ax < ag and bx < b, are both valid inequali-
ties for P, and since ax < ag c-dominates bx < by, we have
Pc P(a,ao) = P(b,bo). From the preceding corollary it follows
that Bx < BO is a valid inequality for P(a.ao). Since it is a
facet of P, there exist n affinely independent points of P,

and hence of P(a.ao) which satisfy Bx = BO. Therefore Bx < Bo

is a facet of P(a,ao). Il

Let T be an arbitrary, finite set of knapsack inequalities

given by
j: . < i i = L]
jENbeJ < bo' 1 1, A (9)T
and let
F(T) = 5 .u  eeh,ei)),
(b*.b5) €T 0

where for any polytope Q, F(Q) is the set of all its facets.
Also, let

t s s s
= = 141 1,1
C(T) = {bx < byl(b,by) = (Z M (Tag) s 2520, (b 10y €T3,

i.e. C(T) is the set of all nonnegative combinations of in-
equalities in T.

A set R € C(T) is said to c-represent C(T) if given any
inequality (b,bo) € C(T), there exists an inequality (a.ao) € R
such that (a.ao) c-dominates (b,by). Equivalently, R is also

said to be a c-representation of C(T). Notice that C(T) is a

c-representation of itself.
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By definition, the set C(T) is infinite. However, every
inequality (b,bo) € C(T) corresponds to a unique set of covers,
i.e. subsets of N. Since the number of such distinct sets of

subsets is finite, we have just proven the following proposition.

Proposition 3. There exist c-representations of C(T)

which are finite in cardinality.

Appropriately, such sets shall be called finite c-represen-

tations of C(T). We next state a result which will allow us to

actually construct a finite c-representation of C(T).

Proposition 4. Let K {Cl,cz,....Cp} be a set of covers

for (9)T. There exists A = (xl,xz,....xt) with A, > 0,

i=1,...,t, such that each set Cg' L=1,...,p is a cover for

the inequality

T(ZAb)x, < ZAb (10)
jEN i=1 * 377 521 1 0 A
if and only if there exists a solutiorn yi,i = 1l,...,%t to the
system ;
g 2 > 0 L= ]
. Yi yi ’ = l'---ppv (ll)K L
i=1
where for each A=1,...,p and i =1,...,%
1= ool - by (12)
1 jec, ?
J 1 P
3

In fact, any solution y;, i = 1,...,% will yield such a A

=

A by setting ki =¥y i=1,000,t.

Proof. Suppose there exists a nonnegative vector A such

that each set C,. f=1,....p, covers (10),. We then have

t . % :
Z(Z kibﬁ) > T kibé. £=1,...,p (13)
3601 i=]1 i=1

or equivalently

¢
3




K i i

L (b, - bo)xi > 0, A=1,...,p. (14)
i=1 jech
Therefcre, in light of (12) we see that (ll)K is satisfied by

¥y = Xi' i=1,.0.,t.

Conversely, if (ll)K is satisfied for some Yy i=1,...,1,

then setting )\i =¥ i=1,...,%, we observe that the

xi, i=1,...,t satisfy (14) and hence they also satisfy (13).
Consequently, each set Cﬁ' L= l,...,p will e a cover for
(10),. |l

We can thus construct a finite c-representation 8 of C(T)
as follows:

(a) Enumerate the set (¢ of all covers for (9)qs and
then generate K = P(C)N{#}, where P(C) is the
power set (set of all subsets) of (.

(8) Starting with G = ¢, for each K € 'K decide whether
the system (ll)K is consistent. If (ll)K is incon-
sistent, go on to the next set K ¢ T(. Otherwise,
choose any one solution A to (ll)K, add the in-
equality (lO)>t to 8, and continue on to the next XK.

This algorithm will clearly generate a finite c-represent-
ation G of C(T) in a finite number of steps. Although any
finite c-representation G would suffice within the framework of
the procedure for generating F(P) which is soon to be defined,
it turns out that we can further restrict our attention to
certain proper subsets of G.

For any finite c-representation G of C(T), any subset M(T)

of G satisfying both { ?




i) M(T) = [(a,ao) € G | there does not exist (b,by) € G
such that (b,b,) strictly c-dominates (a,ay)],
and

ii) if (ax.aé), (ae,ag) both beleng to M(T) and (ax,ag)

c-dominates (ae,ag), then A = 6,

is said to be a minimal complete set of nonnegative combinations

of inequalities in T.

We immediately remark that M(S) is not uniquely defined
since it depends upon both the particular finite c-representation
G from which it is extracted and its arbitrary selection from
among all those subsets of G satisfying properties i) and ii) of
the definition. Therefore, when we say M(T), we mean some arbi-
trary but fixed M(T).

It should also be observed that if we use the previously
defined algorithm for generating a finite c-representation 8 of
C(T), then since property 1i) is satisfied by all inequalities
in G (by construction), 6 will give rise to a unique set M(T).
This M(T) can be identified in a finite number of steps by a
process which uses a binary representation of 'P((z) (i.e. for
each set K € P(@ ), the corresponding binary vector will have

h component if and only if the jth cover of C

a 1 as the jt
belongs to K) and then selects those inequalities whose corres-
ponding set of covers are maximal with respect to the lexi-
cographic ordering of the binary vectors.

We are now ready to state the procedure for generating all

the facets of P.
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A Finite Procedure for Generating F(P) 5

e

Step 0. Let §, denote the set (1) of original knapsack inequa-

—h

lities, and let FO(SO) =S,

Step 1. a) Generate M(S,).
b) Generate F1(S;) = F(M(S,)). |
k-1 j

Step k. a) Generate M(S, _;), where S, ; =F Sqg)-

b) Generate Fk(SO) = F(M(Sk_l)).

It should be clear from the previous discussion that each
step of the procedure requires a finite number of operations.
By utilizing a result due to Chvatal in [7], we show that there
exists a nonnegative integer p such that F (P) c FP(SO). The
smallest such integer p shall be called the f-rank of Sy We
first state a definition and a theorem from [7] for reference.
Let U be the general set of linear inequalities

Cx < CO.
Definition. (Chvatal (7]) An inequality ax < a, belongs

to the elementary closure of U, denoted el(U). if there exists

X > 0 such that
AC = a = integer
[AC)< ag,
where (r] is the greatest integer less than or equal to r.

Further, let e5(U) = et(e¥ 1(y)).




Theorem 1. (ChvAtal [7]) There exists an integer q such

that
F(p(C,Cy)) = e(u).

The smallest such integer q is called the rank of U in [7], however,
we shall refer to it as the k-rank of U.

Letting S be the set of knapsack inequalities (1) and S*
be S together with the constraints 0 < Xj <1, j € N, we are now
ready to state and prove the following result.

Theorem 2. For the set S of knapsack inequalities, if for

some integer h > 0, the inequality bx < b, belongs to eh(S*), then

there exists an inequality ax < a, in M(Fh'l(s)) such that
ax < a c-dominates bx < b,. In particular, if bx < b, is a facet
of P, then bx < b, belongs to Fh(S).

Proof. We prove the theorem by induction on h. If bx < bo
belongs to el(S*), then there exist nonnegative multipliers Xi, i=

1, 2, .., m = |[M{, aj and yj, j =1, 2, «e.y, n = |[N|, such that

m .
T A.at+6. ~v. =0, 13 ¢
5 laJ j YJ bJ for all j N

and
[b2] < by,
where
m i n
b* = L A,a. + I b..
0 4= 10 4o d
N
Consider the inequality I P.x. < given by
jen 9370
A m i
b. = I A;ay, for all j € N U {0].

"N N A
Clearly bx < b, belongs to C(S), and also bx < b, c-dominates

‘ 'I
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bx < b%, which in turn c-dominates bx < b,. Since M(S) is a
(minimal) complete set of positive combinations of inequalities
in S, there exists an inequality ax < a, belonging to M(S) =

~ A
M(FO(S)) which c-dominates bx < b, and thus bx < b, also.

0

Now, inductively assume that the result holds for eP L

S*),
S where h is some positive integer. If bx < b, belongs to eh(S*),

then there exists a set of t inequalities in eh'l(S*) given by

Fx<ef, k=1,2, ..., 8,

and nonnegative multipliers ek, k=1, 2, ..., t such that
1 ’ t

=D for all j € N,

-k
K°J

= i

and

L z 0y ] < by
k=1 K

H
-

From the induction hypothesis, for each k 2, +.0y 1T,

there exists an inequality

x k
d"x < dO

belonging to M(Fh'z(S)) such that d"x < df c-dominates c

k k

X £ cge
lJ *3
be the set of facets deflnlng the knapsack polytopes

k

p(a¥, dg) = conv{x|d¥x S dgy x5 = 0 or 1, j €N}

for each k =1, 2, v, t.

Since P(dk.dg) < P(ck.cg) for each k =1, 2, ..., t, there

exist multipliers og, i=1,2, ooy AUx) = ISiI satisfying

L(x)
z ck fk = cE. for all j € N,
i=1 ij J
and X
k
_1 o
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As before. bx < bO is c-dominated by

k
T ( 2 8, ¢ )x < Z 8. c (15)
jEN k=0 X 4773 k=0 ¥ O’
By substitution, (15) is dominated by
t k) t Q(k)
(L ‘T Gkokfk)x < I T eokrk, (16)
JEN k=0 i=1 k=0 i=1 0

which is a nonnegative combination of inequalities in Fh’l(s).

By definition, there exists an inequality ax < ag belonging to

M(Fh°l(s)) such that ax < a, c-dominates (16) and hence bx < bo.

- The last assertion of the theorem follows directly from
. Proposition 3, and the fact that if bx < b, is a facet of P, then
‘ it is also a facet of P(b,by). |

It immediately follows from this theorem and Theorem 1 that |

the previously stated procedure will indeed generate all the

facets of P in a finite number of steps. We also see that the
f-rank of S is less than or equal to the k-rank of S%*,.

Obviously this procedure requires a large number of opera-

tions to generate F(P). It is therefore natural to investigate
the nature of those inequalities obtained after one pass of the

procedure. In particular, we shall compare such inequalities to
those belonging to the elementary closure of S*. 1In order to do

this, we call Fl(s) the elementary f-closure of S and henceforth

refer to el(S*) as the elementary k-closure of S*. These two

elementary closures are the next topic of discussion.

3. Properties of the Elementary Closures.

Recall that we have already established that the f-rank of
S 1s less than or equal to the k-rank of S*, where S is the set

.‘iHiu‘.__________-___‘_-.--....-..-...-....-..-.-..-‘h oy
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of knapsack inequalities (1) and S* is S together with the con-
straints 0 < X <1, jJ € N. In the same manner, it follows from
Theorem 2 that any facet contained in the elementary k-closure of
S* will also be obtained in the elementary f-closure of S. We
shall characterize those inequalities and in particular, those
facets of P which are obtainable in the elementary k-closure of S*.
We then apply this characterization to an example showing that
certain facets of P belonging to the elementary f-closure of S can
not be obtained in the elementary k-closure of S*. We conclude
from this that the elementary f-closure of S generally contains
more facets of the multidimensional knapsack polytope P than does
the elementary k-closure of S*,
Once again let U be the general set of linear inequalities
Cx 2 Cye
We now characterize those inequalities which belong to el(U) and
note that the sufficiency of condition (17) is given in [7].
Proposition 5. The inequality ax < a, belongs to el(U)
if and only if
max {ax|Cx < Co} <ay + 1. (17)
Proof. Condition (17) holds if and only if the system of
linear inequalities

Cx

IA

Co

ax > ag + 1

is inconsistent. This system is inconsistent if and only if the

~p.

following system is consistent (see, for example, [ll])
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which is true if and only if ax < a, belongs to el(U). Il

Observe that the testing of condition (17) merely involves
the solution of a linear program.

This proposition is now used in the following example which
shows that a facet of the multidimensional knapsack polytope P can
belong to the elementary f-closure of S without belonging to the
elementary k-closure of S*.

Example 2. Consider the set T consisting of the two knap-
sack inequalities

7Xl + 6x2 + lbxj + 3%, + 2x5 + 2x6 * Xp *v Xg 7 (18)

iA

A

3. (19)

Let P be the multidimensional knapsack polytope corresponding to

2xl + X + 2x3 + Xy + x5 + X¢ + x7 + Xg

the system defined by T. Adding these two inequalities together,
we obtain
9%, + 7x, + 6x3 + 4x4 + 3x5 + 3xg + 2x7 + 2xg £ 10 (20)
which belongs to C(T). Now, the inequality
2x1+ X, + x3 + x5 + x7 < 2 (21)
is easily shown to be both a facet of the knapsack polytope
corresponding to (20) and also of %. Therefore, (21) belongs to
the elementary f-closure of T. However, it can not belong to the
elementary k-closure of T*(i.e. T together with 0 < X3 <1,
j=1, 2, ..., 8) since
max{le * Xyt Xg 4 Xg 4 x7|x satisfies both (18) and (19),
0 < x5 <1, j=1,2,...,8} =3.
We thus see that the elementary f-closure generally contains
more facets of P than does the elementary k-closure. The next

example shows that the elementary f-closure unfortunately does not

contain all the facets of P.
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Example 3. Consider the set W of inequalities
6%, + 3x, + Xy *+ 3x, * X5 6 (22)
Xy * 3%, + 3x3 + X, + 3x, 2 8, (23)
and let P denote the corresponding multidimensional knapsack poly-

tope. The inequality

e

;\ 3xl + 2x2 + x3 +ox, x5 < 3 (24)
is a facet of P. However, inequality (24) is not valid for either

of the knapsack polytopes Pl’ P2 corresponding to (22) and (23),

respectively. Nor is it a valid inequality for any knapsack poly-

tope arising from a nonnegative combination of (22) and (23).
This is easily seen if one considers that there is no nonnegative
combination of (22) and (23) for which the sets M; = {2, 3, 4} and
M, = {2, 3, 5} are both covers; whereas, M, and M, both cover (24).
Therefore, inequality (24) does not belong to Fl(w).

We conclude our discussion by presenting some properties of
the classes of valid inequalities derived from minimal covers for
the knapsack polytope P(a,aj) which were defined in [1] and [3].
Recall that for any minimal cover M of the knapsack inequality (3),

the set E(M) = M U M', where

M = {j€NMa,>a, ]
J- N
and

a. = max {a:},
J1 jem 9

is called the extension of M to N. Letting'"l be the set of all
minimal covers for (3), Balas and Jeroslow have shown in [3]
that inequality (3) is equivalent to the set of canonical in-
equalities

A
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£ x; < M -1, for all M € M. (25),,
JEE(M) Y :

In [1], Balas defines a family of strong valid inequalities
for P(a.ao). many of which are facets, based on the following

result. Assume P(a,ao) is full-dimensional.

Theorem 3. (Balas [1]) The inequality
£B.x. < B ( 26)
j€N‘]J Y
is a valid inequality for P(a.ao) if Bo = [M{-1 for some minimal

cover M for (3), Bj = 0 for all j € N\E(M), and for j € E(M), Bj =h,
where h is the uniquely defined integer satisfying
£ a;, < a; < I a., (27)
. i = J : i
1€Mh lEMh+l
where M, is the set of the first h elements of M, h = 1, ..., Iml.

If in addition one has

h
then (26) is a facet of P(a.ao).

L a, +a. < a,, forall j€N., h=0,1, ..., IM|
s 1 J - 0 h ’ '
1€M\Mh+l
where
N = {j ENlej =h}9 h =O' l' * e ey lMl,

Observe that inequality (21) of Example 2 belongs to this
class of valid inequalities for the knapsack polytope corresponding
to inequality (20).

Letting R* be the set of linear inequalities

ax < aq
0 < x,;
the following result provides a necessary and sufficient condition

51. jGNl

for the inequality Bx < 80 derived from the application of the
preceding theorem to some minimal cover for (3) not to belong to

the elementary k-closure of R*,
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Proposition é. The inequality Bx < Bo belonging to the

class of valid inequalities for P(a.ao) defined in Theorem 3 does
not belong to el(R*) if and only if there exists an index

hefje lej > 2} with

B
_h - -

where W = {j € NIBj =1} = {310 3pr «ves jlwl] is written such

that a. >2a. 2 ... 2 a. y and W
17 d2

is the last k elements in W.
Proof. The inequality Bx < Bo can be obtained by applying
Theorem 3 to the knapsack inequality ax < ag with the minimal cover
Bo+l
M=W . Suppose that such an index h exists. Consider the

fractional point X defined by

Bo
1 if jew”, l
. ag- ZBOaJ
xj = JEW if j = h,
an
0 otherwise.

Clearly aX = a, by construction. Also, since

a + I a. > T a. > a
h B 1 - 3 o
jew 0 JEM

we have

hasin el oat oo

(Observe that this implies that condition (28) can hold only if
Bp > 1.) Now,

BxX

it
™
™

* Pp¥y 2 Bo * L
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since Bj =1, for all j € W and condition (28) hoclds for h.
By Proposition 5 we have Bx < By does not belong to el(R*).
Conversely, suppose that such an index h € {j € NIBj > 23
satisfying (28) does not exist. It is well known that an optimal
solution x° to the continuous knapsack problem
max {z = Bxlax < ag, 0 < x5 < 1, j € N} (29)

can be obtained by reordering the indices in N as {il, 12, vy in},

B B. B.
where 11 > 12 > > 'n ,
. = e =
11 12 *n
and defining
l i 1f J e {ll! 12' s 0 0y lk-l}
k-1
a - ¥a
o] s
«© _ J'll if 5 = 3
j - _——ai l J - lkp
k
0 otherwise,
k-1 k
where Z a. < a < zoa: .
t=1 ¢ — O t=1 1y
Clearly, both xg <1l and Bi > 0. Now, since Bx < 8o is a valid
k k
k-1
inequality for P(a,ao). it follows that = By < Bgpe In fact
t=1 ~t
k‘l k"l O ( )
ZB: =8, for suppose L B. < B, -1, Then Bx < (B, -~ 1)+1 = B8,
t=1 1t 0 t=1 1t 0 0 0]

but consider the point x* ¢ {0,1}" defined by supp(x*) = wPo. e
then have that Bx* = Bo > Sxo which contradicts the optimality of
x0 for (29). We next consider two cases which are collectively
exhaustive.

Case 1. If Bi = 1, then
k
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0 k-1
z:Bx:ZBi+X.<BO+l
=1 7t

and Bx < B, Dbelongs to el(R*).

k-1 )
Case 2. If B, > 2, then £ a, > L . a. since '
kT t=1 14 ~ jewPod |
k-1 !
p=1 "p P
condition (27). Therefore,
’ k-1
a, - L a.
z=8x’ =g, +8; (0 p1 k)
. k ai )
k
R 8, =~ L a
0 jﬁWBO j
< < BO + Bi ( a. )
L4 k lk
< 50 + 1

since condition (28) does not hold for any j € N such that Bj > 2.

Thus, Bx < 8, belongs to eX(R¥). |l

The following consequence of Proposition 6 is immediate.

Corollary 6.1. All canonical inequalities [3] implied by

ax < a, belong to the elementary closure of R¥*,
We now illustrate Proposition é in the following example.
Example 4. Let P* be the knapsack polytope corresponding
to the inequality
9%, * 7x, ¢+ 6x3 + 4xu + 3x5 + 3x6 + 2x7 + 2xg + Xg < 10 (30)

taken from [1]. The inequality L b
2%y + Xy ¥ Xy o Xg+ Xg <2 (31)

can be derived by the application of Theorem 3 to the minimal cover

{3, 5, 6} for (30), and it belongs to the elementary k-closure of

e
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(30) together with the constraints 0 < xj <1l, =11, 2, ..., 9
since

2 8

— - = - < .

3 (10 (3+3)) 5 1
However, the inequality

. 2%y * X, Xq * Xg * Xy < 2

derived from the minimal cover {3, 5, 7} does not since

£ (10 - (3+2)) = ¢ > 1.
P Although we have characterized those inequalities and hence,

those facets of P(a,ao) belonging to the family of valid inequalities

L ‘ defined by Theorem 3 which belong to el(R*), it is not correct to
assume that these are the only type of facets belonging to el(R*).

For instance, consider the follcwing.

Example 5. The inequality
2xq + 2%, + 2x3 + 2%, + Xg ¥ Xg * % < 4 (32)

is a facet of the knapsack polytope corresponding to

3%, + 3x, ¢+ 3x3 + 2%, + 2x5 + 2xg * 2x7 < 6. (33)

Using Proposition 5, we can easily determine that (32)
belongs to the elementary k-closure of (33) together with the
constraints 0 < xj <1, j=1, 2, «¢ey 7. However, the facet (32)
does not belong to the class of valid inequalities for the knapsack
polytope corresponding to inequality (33) defined by Theorem 3.

In fact, as shown in [4], the facet (32) can not be sequentially

lifted from any minimal cover of (33).

i
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